IEEE TRANSACTIONS ON GAMES, VOL. X, NO. X, AUGUST 2018

A Multi-Faceted Surrogate Model for Search-based
Procedural Content Generation

Daniel Karavolos, Student Member, IEEE, Antonios Liapis, Member, IEEE, and Georgios Yannakakis, Senior
Member, IEEE

Abstract—This paper proposes a framework for the procedural
generation of level and ruleset components of games via a
surrogate model that assesses their quality and complementarity.
The surrogate model combines level and ruleset elements as input
and gameplay outcomes as output, thus constructing a mapping
between three different facets of games. Using this model as
a surrogate for expensive gameplay simulations, a search-based
generator can adapt content towards a target gameplay outcome.
Using a shooter game as the target domain, this paper explores
how parameters of the players’ character classes can be mapped
to both the level’s representation and the gameplay outcomes of
balance and match duration. The surrogate model is built on a
deep learning architecture, trained on a large corpus of randomly
generated sets of levels, classes and simulations from gameplaying
agents. Results show that a search-based generative approach
can adapt character classes, levels, or both towards designer-
specified targets. The model can thus act as a design assistant
or be integrated in a mixed-initiative tool. Most importantly, the
combination of three game facets into the model allows it to
identify the synergies between levels, rules and gameplay and
orchestrate the generation of the former two towards desired
outcomes.

Index Terms—Procedural Content Generation, Search-based
PCG, Surrogate Model, Deep Learning, Shooter Games

I. INTRODUCTION

AME design practitioners must integrate a variety of

creative domains, such as visuals, music and narrative,
to bring about an intended experience in a player. Liapis et
al. have identified six different facets of games which require
distinct creative input: rules, levels, visuals, audio, narrative
and gameplay [1]. When designing a new element for a game,
a designer must consider its effect on players’ experience, as
well as how it matches with the other content. For example,
switching from a game rule that allows players to regenerate
health continuously to a rule that a player colliding with a
specific powerup heals a preset number of hit points will have
vast repercussions across facets. For starters, the number of
hit points healed (which is a detail of the above rule) may
greatly affect the priorities of players in seeking this powerup
out, and may unbalance other parts of the ruleset such as the
relative power of different weapons. Moreover, the powerup
will need a mesh and textures to signify its function, while
the game levels will need to include such powerups at critical
locations which must also be carefully considered. Finding
how one element of the game design (e.g. a visual asset, a
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level design choice, or a game rule) will influence the design
of other game elements as well as the player’s experience is a
core challenge for a human designer — let alone a computer.

Procedural content generation (PCG) has largely side-
stepped the issue by focusing on a single type of content at a
time, and running the generative algorithm in a well-defined
space that does not require knowledge about the rest of the
game. For instance, a level generator for StarCraft (Blizzard,
1998) already has established what the possible resources,
the units’ statistics, or the textures of the game are. The
generator thus must only consider how to distribute spatially
game elements that are otherwise pre-authored [2]. When the
need for multiple generators does arise, their dependencies are
carefully crafted. For example, Dwarf Fortress (Bay 12 Games,
2006) has many generators that contribute their content inde-
pendently, while in No Man’s Sky (Hello Games, 2016) the
important information of one generator is passed to the next
generator as a sequential pipeline.

This paper proposes a framework for combining the gener-
ation of levels and rulesets by evaluating the joint artifacts
with a model of gameplay. This model has been trained
via deep learning on gameplay logs to automatically extract
features and find an approximate mapping between game
levels, rules and gameplay outcomes. The model does not
offer the precision of a simulation, but its real-time feedback
makes it a useful design tool. The computational model is thus
able to identify interrelations between the three facets without
needing to produce and test the outcome, following a similar
process to a human designer who drafts and corrects content
without playtesting every iteration. The model can be used as a
surrogate for actual game playthroughs, informing generators
who adapt content of all contributing facets (in this case
levels and rules). The ability of the framework to both predict
gameplay outcomes from the game design specifications and
to automatically create new designs renders it a computational
creator, which can easily work alongside a human creator in
a mixed-initiative design task [3]. Indeed, the experiments in
this paper show the benefits of this approach for fine-tuning
an initial design towards designer-specified gameplay goals.

The proposed framework is tested on a two-player, compet-
itive first-person shooter, which was chosen for its relatively
straightforward gameplay. The gameplay facet is quantified
as two outcomes: the score balance between the two op-
ponents and the duration of the game. The level facet is
the arena in which the game takes place and includes the
placement of powerups that affect the players’ survivability.
The rules facet is represented by the character classes of
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the two players. Character classes are a common way to
group game mechanics in multiplayer shooter games such as
Team Fortress 2 (Valve, 2007) and Battlefield: Bad Company
(Electronic Arts, 2008). Character classes offer players dif-
ferent gameplay options (e.g. scouting or area control) and
may have a different survivability and movement speed as
well as signature weapons that balance their affordances. A
computational model that maps levels and rules to gameplay
outcomes is trained via deep learning on a rich corpus of
simulated playthroughs. Moreover, this model is used to adapt
either facet individually or orchestrate the generation of both.
Experiments show that better gameplay is obtained when both
facets are adjusted simultaneously, in an orchestrated way.
This paper builds on earlier work, where a model was
trained to find associations from levels and rules to game-
play in a more abstract game [4], as well as surrogate-
based generative methods for the current game framework
[5], [6]. Unlike those earlier studies, in this paper the corpus
of gameplay simulations is balanced while each gameplay
outcome is predicted via its own, individual model (rather
than using one model with two outputs). More importantly,
this study extends previous work by (a) introducing a multi-
objective approach where the two target gameplay outcomes
are treated as independent objectives, (b) performing for the
first time surrogate-based orchestration where both levels and
rules are adapted simultaneously. Both of these new additions
are shown to perform better as adapting both levels and rules
can result in balanced matches with much fewer changes in
class parameters or levels than when adjusting only one facet.

II. RELATED WORK

Procedural content generation has been used in the game
industry for almost 40 years, and it has been an active field of
academic study for over a decade. With its long history, it is
not surprising that a wide variety of algorithmic techniques
have been used, such as generative grammars, constraint
solving and searching the design space [7]. This paper focuses
on search-based algorithms [8], as they allow the generative
process to be guided via evaluations of the intermediate
content. These evaluations can be based on the explicit choices
of the designer [9] or the player [10], a computational model
of preference [11], [12], game simulations [13], [14] or static
fitness functions [15], [16].

While PCG applications usually focus on one facet of
games (usually levels), a key challenge along the path of fully
autonomous game generation is the orchestration of the multi-
tude of creative facets of a game. Based on the survey of [1],
games consist of six facets (visuals, audio, narrative, levels,
rules and gameplay) and designing content of one facet must
account for properties of the other facets. Cook and Colton
[17] describe a multi-faceted approach to generating arcade
games, using static fitness functions on each facet separately.
At each step of the process, each generator incorporates the
best design of the other generators into the evaluation of their
design. Without actual game simulations, however, it was diffi-
cult to achieve playable content. Using simulated playthroughs
with artificial agents has shown promise for orchestrating

multiple game facets, as each facet may affect the simulation
differently. In the seminal work of Browne and Maire [14],
both rulesets and board layouts were optimized based on
metrics that processed the progress of gameplay between two
agents with the same decision-making criteria. Similar to [14],
this paper approaches orchestration by combining both levels
and rules in the same genotype: therefore, facet generation
is concurrent rather than via a generative pipeline favored by
several game orchestration studies [1].

Simulated gameplay has been used to compute metrics
for search-based PCG in several ways. For instance, [14]
computed 57 metrics, many of which related to game progres-
sion: these included the duration of the game (in moves), the
uncertainty of the game and its drama (i.e. how easy one player
could reclaim the lead towards victory). When assessing game
rules, [13] measured the learnability of the game by observing
the average score of a population of controllers learning to play
the game across all generations. In the genre of first-person
shooters, Lanzi et al. [18] evolve levels towards score balance
between players, while Gravina et al. [19] use the heatmaps of
players’ deaths from a simulation in order to create surprising
weapons that break heatmap patterns. This paper extracts two
simple but established metrics from the simulations: the score
ratio at the end of the simulation, similar to [18], and the
duration of the match, similar to [14].

Unlike simulation-based evaluations, gameplay outcomes in
this paper are predicted by a convolutional neural network
(CNN), which acts as a surrogate model [20]. Though famous
for their classification performance in natural images, CNNs
can learn to extract patterns from any type of spatially arranged
input. Convolutional neural networks have been successfully
applied to guide game playing agents in a large variety of
games, most notably [21], [22], which has led to a surge
of academic interest in deep learning for game playing [23].
Patterns extracted via deep learning can also be applied to
generate game content, e.g. by predicting tile types in levels
for Super Mario Bros. (Nintendo, 1985) [24] or resource
locations for maps in StarCraft Il (Blizzard, 2010) [25]. Often,
algorithms apply the machine learned patterns directly to an
initial design and use the output as the generated content,
without evaluating its gameplay [26]. An interesting exception
is [27], which describes a two-phased approach for creating
Super Mario Bros. levels. In the training phase, a convolutional
generative adversarial network is trained to learn patterns of
existing levels by mimicking them. In the generation phase,
a simulation-based algorithm searches the latent space of
the generative network for playable levels with the desired
gameplay. This approach is in many ways the inverse to the
one described in this paper, where the CNN learns patterns in
the latent representation but the generator applies changes on
the original representation (e.g. the 2D map of the level).

III. GAME FRAMEWORK

This paper uses first-person shooter games as a test case
for mapping level structure and game parameters to gameplay
metrics. This mapping is used as a surrogate to balance a one
versus one deathmatch game between two players by adjusting
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Fig. 1. The in-game 3D level, its representation as a level sketch, and its transformation into CNN inputs. In Fig. 1c, orange and purple areas are the bases
of player 1 and respectively; black tiles are impassable walls; white and gray tiles are the ground and first floor; light gray tiles are stairs from the ground
floor to the first floor; red tiles are healing locations, blue and turquoise tiles are armor and double damage powerups respectively.

the level, the players’ character classes or both. The game
used for these experiments (see a screenshot in Fig. la) is
implemented in the Unity 2017 game engine, and is based on
an existing toolkit [28].

A. Gameplay Facet

The players are assumed to be on an equal skill level, and
each of them controls an avatar that belongs to a specific
character class. This paper uses the same character class
names and attributes from Team Fortress 2 (TF2) as a frame
of reference for the game parameters used in the experi-
ments. While game parameters for character classes and their
weapons are described below, an important parameter is the hit
points (HP): if any player drops to O HP, they are killed and
respawn at their starting location (base). Deathmatch games
are competitive, and the player who scores more Kkills than
their opponent(s) is the winner. A session in a deathmatch
game finishes usually when the time limit expires or after a
specific number of kills by one or both players. The framework
in this paper considers matches to be complete when a total
of 20 kills are scored; a time limit of 600 seconds is also in
place, but results from matches that timed out are ignored.

B. Character Class Parameters (Game Rules Facet)

The character class of each avatar is represented by eight
parameters. Two of these parameters are specific to the charac-
ter, i.e. hit points and movement speed, while the other six are
characteristics of their weapon: damage (per shot), accuracy
(i.e. the size of the cone in which bullets are fired), rate of fire,
clip size, the number of bullets per shot and weapon range. As
noted earlier, the inspiration for the class parameters is the TF2
game; experiments in this paper use parameter values from the
game itself!. The only addition to TF2 parameters was that of
range, to discern when Al agents should shoot. There are three
options for range: “short”, “medium” and “long”.

C. Level Facet

The levels in the game consist of a grid of 20 x 20 tiles.
Each tile may be an impassable, tall wall or a passable tile
on the ground or first floor. There are no tunnels or bridges.
Stairs connect the ground floor with the first floor and players
can drop from any ledge to go down from the first floor to

Uhttps://wiki.teamfortress.com/wiki/Classes

the ground floor. Passable tiles can contain one of three types
of powerups typically seen in shooter games: a health pack
(increases HP up to a maximum), armor (offers additional HP
which is depleted first) and a damage boost (player’s bullets
temporarily deal double damage). An example level is shown
in Figure lc: this simple representation will be used throughout
the paper, while the level can be transformed into a 3D detailed
mesh as shown in Fig. 1b and Fig. 1a. The spawn point of the
first player (P1) is always in the bottom left corner, while the
second player (P2) always spawns in the top right corner.

IV. SURROGATE MODEL

Various models for mapping aspects of the level, game rules
and gameplay facets were explored in [4]-[6]. Results showed
that the best mapping was obtained by a convolutional neural
network (CNN), which informed the choices of this paper.
Unlike earlier work, however, in this paper a separate CNN
for each gameplay outcome (kill ratio and match duration) is
trained, as this simplifies data balancing per outcome. Each
CNN is trained with the same hyperparameters. This section
describes the corpus used for training, the network architecture
and the model’s performance.

A. Dataset Construction

In order to obtain the rich and expressive dataset required for
deep learning, 10° sets of levels and classes were procedurally
generated and evaluated in simulated matches between artifi-
cial agents. A generated level and pair of character classes was
simulated twice, swapping the classes of player 1 and player
2 in the second match. If either match did not result in a total
of 20 kills within the time limit (600 seconds), it was ignored
and a new level-class combination was generated. This brings
the total size of the dataset to 2 - 10° data points (matches).

To simulate the gameplay, we use artificial agents controlled
by behavior trees that were adapted from [29]. In descending
order of priority, agents (a) search for health packs if their
health is low, (b) pick up nearby powerups, (c) attack the
opponent if one is in sight, and (d) search for distant powerups.

To generate the 8 character class parameters described in
Section III-B, each parameter was normalized within [0, 1]
based on a predetermined value range per parameter (inspired
by the values of TF2 classes). A random real value within
[0,1] was assigned to each parameter except for range which
was randomly assigned a “short”, “medium” or “long” value.
With two competing classes, this results in 16 parameters.
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Fig. 2. A visualization of the distribution of the original gameplay outcomes
in (a), (b). The size of each bin is shown before oversampling in (c) and (d)
and the black lines show the size of all bins after oversampling.

To generate the levels for the corpus, we use a constructive
approach which combines random digging agents and gener-
ative grammars [30]. The final level consists of 20 x 20 tiles,
broken into 16 cells of 5 x 5 tiles each (see the cell breakdown
in Fig. 4). Two paths are created between the bottom-left and
top-right corners of the level, first at the cell level and then at
the tile level. Paths initially remove walls to add ground-floor
tiles, but first-floor tiles are added via a random transformation
of some walls followed by an iteration of cellular automata
as per [30]. Among all possible stair locations (between a
ground-floor and first-floor tile), one staircase is placed with
a 20% chance. Each unreachable first floor tile is transformed
into a wall, guaranteeing that all first-floor tiles are reachable.
Finally, there is a 33% chance that a cell will have a powerup.
This powerup is randomly assigned a type and randomly
placed on a ground or first-floor tile in that cell.

B. Gameplay Outcomes and Dataset Balancing

Two gameplay outcomes were computed from each sim-
ulated match: the kill ratio (K R) of the first player’s kills
to the total kills, and the duration of the match in seconds.
The distribution of these two gameplay metrics is shown in
Figure 2. K R is almost uniformly distributed between matches
with a clear advantage for P1 (K R = 1), a clear advantage
for P2 (KR =0) and balanced matches (K R = 0.5). Match
durations range from 150 seconds to 600 seconds, but are
skewed towards 300 seconds, with few matches lasting less
than 200 seconds (2%) or more than 500 seconds (4%). Per-
forming machine learning on unbalanced data might introduce
a bias in the model. As such, a more uniformly distributed
dataset for each outcome was obtained by oversampling the
data with infrequent target values. The bins required for
counting occurrences were created by artificially discretizing
the outcome values in an ad-hoc manner.

Convelution (16)

Game Level @mamngy

Convolution (8) Max-pooling Max-pooling .,

Classes

Fig. 3. The architecture of the CNN-based model, which combines the 2D
channels of the level in Fig. 1 with the class parameters of both players as
a vector. The single output of the model is the predicted gameplay outcome
(match duration or kill ratio).

The duration targets (¢) are normalized via min-max nor-
malization and split into three equally sized bins with edges
at t =0.28 (276 sec) and t = 0.43 (344 sec). With this dis-
cretization, the first bin contains the lower third of the dataset’s
t (shortest matches) and the third bin contains the upper third
of the dataset’s ¢ (longest matches). After oversampling for
balancing bins in ¢, the training set and validation set sizes
are respectively 182.7 x 10% and 20.2 x 10? (see Fig. 2c).

The K R targets have 20 possible values, which are split into
7 bins. Treating a difference of one kill as insignificant, the
discretized space is based on treating K R=0.5=+0.05 as one
bin, with equally sized bins up and down in the range of [0, 1].
After oversampling for balancing bins in KR, the new training
set and validation set sizes are respectively 199.1 x 10 and
22.1 x 103 (see Fig. 2d).

C. Convolutional Neural Network Architecture

The general architecture of the network chosen for this task
is similar to [4]-[6], although some hyperparameters were
changed after preliminary experiments. The inputs of each
CNN are the 16 character class parameters normalized to [0, 1]
and a set of 2D binary channels for the level, while the outputs
of the CNN is the predicted gameplay outcome of a match
simulation. The level input consists of 8 binary channels (one
for walls, two for tile elevation, three for powerups, one for
stairs and one for cover positions?), shown in Fig. 1d.

Each CNN has two separate information streams, one for the
level and one for the pair of character classes. The level input
is passed through two blocks of convolution and max-pooling,
with 8 and 16 filters respectively. The convolutions are of size
5 x 5 (without zero-padding), and the end-result is a flat vector
of 64 features for the level. The 16 parameters of the character
classes are passed to a single fully-connected layer of 8 nodes,
the output of which is concatenated to the flat feature vector of
the level. Finally, this combined feature vector is connected to
a fully connected layer of 128 nodes which connects to another
layer of 32 nodes, which connects to one output that predicts
the gameplay metric (kill ratio or duration). All nodes use an
ELU activation function [31] and the output of each hidden
layer is normalized via batch normalization [32]. The resulting
architecture is shown in Figure 3.

2Cover positions are not used in the current levels, so all pixels for this
channel are currently O.
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TABLE I
MEAN ABSOLUTE ERROR (MAE) AND THE R? VALUES FOR DURATION
(t) AND SCORE (K R) PREDICTION ON THE VALIDATION SET. RESULTS
ARE AVERAGED FROM 10 INDEPENDENT RUNS.

Model MAEkRr | MAE, | R%, R?

Linear Regression 0.0959 0.0941 0.8316 | 0.4912
Perceptron 0.0856 0.0936 | 0.8563 | 0.4931
MLP 0.0846 0.0842 | 0.8562 | 0.5810
CNN 0.0673 0.0817 | 09118 | 0.6044

D. Model Validation

In order to validate the performance of the CNN architec-
ture, several baseline models were trained on the same tasks.
For the sake of brevity, this paper reports the results of the best
multi-layer perceptron (MLP), which has a hidden layer of 128
nodes, as well as linear regression (LR) and a perceptron. All
networks were implemented in Keras [33] and trained with
Adam [34] using 10% hold-out. Each model was trained for
up to 100 epochs, using early stopping to prevent overfitting.

Modeling duration (¢) and kill ratio (KR) are both regression
tasks. Such tasks are typically evaluated via (a) the model’s
prediction error and (b) how much of the variance in the data
is explained by the model. The former is computed by the
mean absolute error, M AFE; and M AE kg for duration and
kill ratio respectively. The latter is computed by the R? metric
(with typical ranges of [0,1]) for these dimensions (R? and
R2 ). Table I shows the average of these performance criteria
based on 10 independent runs.

All models can fairly accurately predict the kill ratio,
as R% . € (0.83,0.92). Interesting in this regard are the
perceptron and the MLP as their kill ratio accuracy is very
similar, but the seemingly small difference in M AFE; has a
big impact on how well they model duration, as reflected by
the large difference in R?. Perhaps this is an indication that,
despite the data balancing, it is hard for the models to predict
when the matches will be extremely long or short.

In general, the more complex models have a lower error
and a higher explained variance than the simpler ones. The
CNN has the lowest error on both tasks, though the difference
in terms of M AE,; with the MLP is small. In terms of KR
prediction, on the other hand, there is a fair performance
improvement of the CNN in terms of both metrics.

V. FACET GENERATION

The main goal of this work is the generation of facets of
games: specifically, parts of the level design and rules facet [1].
Following a search-based PCG approach [8], an Evolutionary
Algorithm (EA) modifies a homogeneous initial population
which is based on human designs. The surrogate model of
Section IV is used to evaluate the evolving population, offering
a prediction of the gameplay outcomes without computation-
ally heavy simulations. While this paper tests three generators
(one for character classes, one for levels, and one for levels and
classes combined), the underlying EA is the same. The details
of the EA, including a single-objective and a multi-objective
variant, can be found in Section V-A; the representation and
genetic operators for each facet generator are in Sections V-B

and V-C and the orchestration process for evolving both levels
and classes is in Section V-D.

A. Evolutionary Algorithms

Following the search-based PCG paradigm [8], every EA in
this paper consists of a population of individuals and assigns a
fitness score to each individual; the best individuals based on
this fitness score are preferred for mutation and recombination,
and their offspring replace the least fit individuals of the
previous population. Particularly for this problem, fitness is
assigned based on the output of the surrogate model of Section
IV, using the parameters of the evolving individual as input.
The goal of every EA in this paper is to adjust the initial
designs (levels, classes, or both) to bring them closer to a
designer-specified target gameplay outcome.

The simplest way to measure proximity to a target gameplay
outcome is to aggregate the distance between the outcomes of
the current individual and each target value. For the single-
objective evolutionary algorithm (SO-EA), the goal is to min-
imize the mean squared error between the model’s predictions
for individual m and the desired outcomes:

F(m) = %((Pt(m) —di)* + (prr(m) —dgr)®) (D)

where m is the individual being evaluated (i.e. a vector of
class and/or level parameters); p(m) = {px g, p:} is the two-
dimensional vector of gameplay outcomes as predicted by the
surrogate model, i.e. predicted kill ratio (pxr) and predicted
duration (p); d = {dkr,d:} is the two-dimensional vector
of the desired gameplay outcomes specified by the designer,
i.e. desired kill ratio (dx ) and desired duration (d;).

SO-EA experiments in this paper employ a generational
evolutionary algorithm with a population size of 100. The
initial population consists of copies of a single initial seed
provided by the designer. In each generation, the fittest 10%
of the population is copied from the previous generation un-
changed (applying elitism), while the remaining 90% is chosen
via tournament selection of size 5, and then recombined and
mutated. Each gene of each individual has a 20% chance of
being mutated; each pair of individuals has a 80% chance
of producing offspring via recombination. These values were
chosen based on a grid search of at least 100 runs with each
generator, based on overall best performance across facets. The
mutation and recombination operators depends on the content
generated and will be described in Sections V-B, V-C and V-D.

The fitness function described in Eq. (1) treats both game-
play outcomes as equal and attempts to optimize them simulta-
neously. There is no guarantee that the two gameplay outcomes
are not conflicting, however: for instance, longer matches may
be less balanced (assuming long duration and balanced kill
ratio are the target outcomes). In order to test the effect of
combining both gameplay outcomes into a single target, this
paper compares the described single-objective algorithm with
a multi-objective evolutionary algorithm (MO-EA) that aims
to minimize the two components of Eq. (1) separately:

Fxr(m) = (prr(m) — dxg)’ )
Fy(m) = (p,(m) — dy)* (3)
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The MO-EA attempts to minimize both objectives of Eq. (2)
and (3), using the popular NSGA-II algorithm [35] for creating
the next generation. NSGA-II maintains a diverse Pareto front
of non-dominated individuals and performs a binary tourna-
ment selection based on non-domination ranking and distance
to other individuals. The other operators and hyperparameters
(e.g. population size) of the MO-EA are the same as the SO-
EA described above.

B. Generating Classes

The character class generator operates on the sixteen pa-
rameters (eight per player class) described in Section III-B.
The parameters are represented as floating values between 0
and 1, based on the same predetermined value range as in the
dataset construction of Section IV-A. Each parameter has an
equal chance of being mutated. Except for weapon range, class
parameters are mutated by adding a random number sampled
from a normal distribution (¢4 = 0, ¢ = 0.1). The mutation of
the weapon range randomly changes it into one of the other
two possible values (long, medium, short). Values above 1 and
below 0O are truncated to 1 and O respectively. Recombination
is implemented as a standard one-point crossover.

C. Generating Levels

Following the methodology presented in [6], the level gen-
erator operates on a hierarchical representation of two layers.
While the level consists of 20 x 20 tiles, the gene represents
this as a 4 x 4 grid of cells that each contain 5 x 5 tiles (see
Fig. 4). Recombination is implemented by randomly picking
a cell from either parent at each position of the cell grid.

When applying mutation, each cell has a 20% chance of
being mutated by one of the following variants: Move Powerup
to another cell, Grow Cell or Erode Cell (in terms of either
first-floor tiles or walls), Place Stairs next to a random first-
floor tile, Place Block or Dig Hole (to add ‘chunks’ of tiles of
the same elevation). A mutation example is shown in Fig. 4;
see more details of the mutation operators in [6]. If a mutation
is not applicable, (e.g. if a cell does not contain powerups for
the first variant), the algorithm tries another mutation variant
until a mutation is applied or all variants have been tested.

After mutation and recombination, a repair function ensures
that every level is well-formed. Each level is analyzed in terms
of traversability, enforcing the following constraints: (a) bases
should always be reachable via ground-floor tiles, (b) each
powerup must be reachable, (c) each first-floor tile should be
connected to at least one stair, (d) there should be no holes
in an area of first-floor tiles without a stair to climb out of
the hole and (e) a stair should always lead to the first floor.
A naive constructive algorithm repairs unreachable areas and
places or removes stairs (without changing players’ bases). If
repair is impossible, the individual receives a fitness penalty.

D. Orchestration Class and Level Generation

When generating both facets at the same time, the classes
and the level are treated as two components of one individual’s
gene. Mutation has a 50% chance of applying the respective
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Fig. 4. An example of a level and its offspring when only mutation is applied.
The levels are broken into cells: in cell B1 the Erode Cell mutation removed
some walls; in C2 the Place Stairs mutation added a stair; in C3 the Move

Powerup mutation moved a double damage powerup to B4; in D4 the Place
Block mutation has added a 3 X 3 ‘chunk’ of walls.

mutation operations to either the class or the level component.
Recombination is implemented by swapping the level compo-
nent between the two parents, resulting in two offspring with
the classes of one parent and the level of the other parent.

VI. CASE STUDY

As a case study, this paper explores how a match between
two archetypical classes can be balanced towards desired
gameplay targets. This case study involves three experiments:
adjusting a level given two character classes, adjusting two
character classes given a specific level and adjusting both the
level and the character classes at the same time.

All experiments in this paper have three desired gameplay
outcomes: balanced matches (i.e. desired kill ratio dx g = 0.5)
of short, medium and long duration. The exact values for the
desired durations (d;) are respectively 0.14, 0.36, and 0.72.
These values are calculated from the midpoints of the bins in
Fig. 2a and shown as colored diamonds in Fig. 6.

A. Initial Seeds

Ten levels were designed to test how classes can be gener-
ated to match them or how the levels can be adapted to match
specified or generated classes. The levels of Fig. 5 intentionally
feature explicit level patterns such as arenas, choke points and
flanking routes [36], and a varying degree of symmetry.

A number of archetypical classes [37] were considered, and
their parameters were adapted to our framework based on the
parameters in Team Fortress 2. We refer to these initial classes
as TF2 classes in this paper. A preliminary experiment was
performed on the ten levels of Fig. 5 to derive the simulation-
based gameplay outcomes in pairwise matchups of the Scout,
Heavy and Sniper classes. While the Sniper class dominated
every opponent in every level (the kill ratio of the Sniper
was over 0.90), the matchups between Scout for player 1
and Heavy for player 2 were imbalanced but diverse. Fig 6a
shows the different kill ratios and match durations per level
based on 30 simulated playthroughs. Fig 6a shows that while
the Scout always has an advantage against the heavy class,
this differs from level to level. Moreover, the match durations
were almost evenly distributed between medium (40%) and
long durations (60%). This pairing was selected for further
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Fig. 5. Levels used for evaluating evolved classes and as initial seeds for
level generation.

experiments since it was evident that changing the level itself
could influence the player balance (unlike with the Sniper
class), while the lack of short matches raised a challenge for
the generator to tackle.

B. Performance Metrics

The main goal of these experiments is to identify whether
the surrogate-based facet generators can bring the different
game elements closer to the intended gameplay outcomes.
Towards this, the improvement metric in Eq. (4) calculates the
actual gameplay outcomes of the evolved content and com-
pares it to the actual gameplay outcomes of the original content
(see Fig. 6b). The actual gameplay outcomes are calculated
from 30 simulated playthroughs with AI agents. A second goal
is to observe whether the predictive model matches the actual
gameplay outcomes of evolved content. Towards this, the error
metric in Eq. (5) compares the output of the surrogate model
(which is used as part of the fitness calculation) with the actual
gameplay outcome from 30 simulated playthroughs.

_ dist(d,a(m)) — dist(d, )
- dist(d, 1) @
E(m) = dist(p(m), a(m)) (5)

O(m)

where dist(x,y) is the Euclidean distance between vectors
x and y; a(m) = {akxr,a;} is the two-dimensional vector
of actual gameplay outcomes averaged from 30 simulated
playthroughs, i.e. actual kill ratio (ax ) and actual duration
(ar); 2 = {ik R, it} is the vector of actual gameplay outcomes
of the initial class/level set, i.e. initial kill ratio (ix ) and
initial duration (7;); other notations are described in Eq. (1).

Finally, it is relevant to understand how the content is
adapted in different situations. To do this, we calculate the
degree in which different parameters of the content change.
This can include changes in class parameters (i.e. the geno-
type), changes in level appearance (i.e. pixel to pixel difference
between levels) or level statistics (e.g. the number of health-
packs or stairs).

For single-objective evolution, the fittest individual in
the end of the evolutionary process is tested in simulated
playthroughs. Since MO-EA approaches produce a large set
of Pareto-optimal individuals, in the interest of computational

1
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Kill Ratio (KR)

(b) Improvement via evolution
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(a) All initial seeds

Fig. 6. Initial state of the game design of Scout vs Heavy in terms of the
gameplay dimensions, and evolution towards short matches. The black dots

indicate the different levels, the diamonds indicate the desired gameplay values
for short (blue), medium (magenta) and long (orange) matches.

effort —and fairness in comparisons— only the best individual

is tested based on the single-objective fitness of Eq. (1).
Throughout the experiments, significant differences are es-

tablished on a statistical significance threshold o = 0.05.

C. Balancing Character Classes

As a first experiment, the surrogate-based generator adjusts
the parameters of the two classes (Scout and Heavy) in all ten
levels of Fig. 5. The evolved classes are collected from ten
evolutionary runs per level and target gameplay outcomes (i.e.
300 evolved classes per EA); the actual gameplay outcomes of
these classes are calculated from 30 simulated playthroughs.

Figure 7 shows the percentage improvements over the initial
classes on a per level basis and across all levels. It is evident
that the evolved classes perform closer to the desired target
in general, although the improvement is significantly higher
in short or medium match targets than in long match targets
for both SO-EA and MO-EA. On the one hand, for D4 the
improvement is consistently high for all targets (over 50% for
SO-EA and over 70% for MO-EA). On the other hand, long
matches for D5, D2 and D7 are rarely improved in both SO-EA
and MO-EA. For D2 and D7 the initial classes’ match duration
was very close to the desired long duration (see Fig. 6a) so the
lack of improvement is to a degree expected. D5 has similar
gameplay outcomes to D10 (see Fig. 6a), but class evolution
in D10 manages to improve by at least 40% on long matches.

To identify how the classes are adjusted towards different
targets, Fig. 8 shows the difference from the original class
parameters. averaged across all ten levels. Trends seem to
be consistent across SO-EA and MO-EA, while there are
some interesting differences in how each class changes. For
instance, in all cases both the Heavy and the Scout (which
are short-range classes) see an increase in range which is
however less pronounced in long matches. Similarly for both
classes the accuracy increases in short matches and drops in
long matches. Some of the parameter changes make sense
considering the initial values for the two classes: for instance,
the Heavy class has the most HP and lowest damage per
bullet of all TF2 classes and thus it is understandable that
in short matches its HP is reduced substantially (to reduce
survivability) while damage is increased (to increase the threat
to the opponent). These trends are consistent: the Scout class
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Fig. 7. Class Adaptation: Average improvement towards the desired kill
ratio and duration of evolved classes, from 10 evolutionary runs per level of
Fig. 5. The last column shows average improvement of all 100 runs per target
duration; error bars show the 95% confidence interval.
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Fig. 8. Class Adaptation: Parameter changes of the two classes evolved
for balanced matches of short, medium and long duration. Values show the
difference of each parameter of the evolved class compared to the initial class
(Scout for P1, Heavy for P2): hit points (H), speed (S), damage (D), accuracy
(A), clip size (C), rate of fire (RF), bullets per shot (B) and range (R). Values
are averaged from 100 runs; error bars show the 95% confidence interval.

(which had few HP to begin with) increases its HP in long
matches to increase survivability. All changes are therefore
intuitive, with long matches favoring classes with many hit
points and low accuracy while short matches favor high-
damage, long-range classes.

D. Balancing a Level

For the second experiment, the surrogate-based generator
is used to evaluate an evolving level while the two classes
competing in it remain the same (i.e. the Scout and Heavy
TF2 classes). The initial seed for each experiment is one of
the levels of Fig. 5, and the desired gameplay target is a
balanced match of one of the three durations (for a total of 30
experiments of 10 evolutionary runs each). This results in 300
fittest levels for SO-EA and 300 fittest levels for MO-EA.

Figure 9 shows the percentage improvements over the initial
levels. Unlike improvements in evolved classes in Fig. 7,
patterns are much less consistent and in some cases the evolved
levels are worse than the initial ones in terms of adherence to
desired outcomes. Moreover, there are noticeable differences
between SO-EA and MO-EA outcomes: where levels evolved
from D4 and D9 are worse or equal to the initial one for SO-
EA (with short or medium match targets), there are consistent
improvements in all durations with MO-EA, except D7 for
long matches. With D7 as an initial seed, improvements are
negligible for short and medium match targets for SO-EA
while the opposite is true for MO-EA. Levels evolved for short
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(a) SO-EA (b) MO-EA

Fig. 9. Level Adaptation: Average improvement towards the desired kill
ratio and duration of evolved classes, from 10 evolutionary runs per level of
Fig. 5. The last column shows average improvement of all 100 runs per target
duration; error bars show the 95% confidence interval.
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Fig. 10. Level Adaptation: Changes in maps evolved for balanced matches of
short, medium and long duration. Values show the difference in the number of
tiles of the evolved levels compared to the initial level used as a seed: ground-
floor tiles (0), first-floor tiles (1), walls (W), stairs (S), armor powerups (A),
double damage powerups (D) and healthpacks (H). Values are averaged from
100 runs; error bars show the 95% confidence interval.

and medium match targets improve greatly over the initial D6
when evolved with SO-EA, but only slightly with MO-EA.
Based on the overall improvements, evolving with MO-EA
improves the levels more than SO-EA for all target durations,
though the difference between the results on the long match
targets are small.

To understand why the two EA approaches differ in terms
of outcomes, Fig. 10 shows how the number of different
tiles (e.g. healthpacks) change from the initial level, averaged
across all ten initial seeds. It is evident that in both SO-
EA and MO-EA the number of ground-floor tiles increases
when targeting short matches, to the expense of first-floor
tiles. Medium and long matches see an increase in first-floor
tiles to the expense (primarily) of walls. This results in larger
levels in terms of places that can be visited by the players.
Interestingly, for SO-EA the smaller number of first-floor
tiles in short matches does not result in a decrease in the
number of stairs but rather the opposite. The reason will be
evident in the next paragraph. Finally, while the number of
healthpacks and double damage powerups per level does not
fluctuate on average from the initial values, the number of
armor powerups increases substantially when evolving levels
for longer matches. Similar to the class changes in Fig. 8§,
where classes tailored to longer matches had more hit points
(HP), armor powerups artificially increase players’ HP and are
favored for long matches to increase players’ survivability.

In order to better understand how levels can be adjusted
towards balanced matchups of different durations, the most
improved levels across target durations are shown in Fig. 11
and 12. We observe that for short matches (Fig. 11b and 12b)
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Fig. 11. Level Adaptation: Most improved levels for DS, via SO-EA.
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Fig. 12. Level Adaptation: Most improved levels for D4, via MO-EA.

many of the first-floor areas are transformed into walls (top
left and bottom right corners of Fig. 11b) or into ground-
floor tiles (middle ‘chunk’ of Fig. 12b). However, there are
still several small ‘chunks’ of first-floor tiles (of one or two
tiles) which need to be connected via one or more stairs
due to the constraints described in Section V-C; this explains
the prevalence of stairs even when first-floor tiles are few as
observed in Fig. 10. In terms of broader level structures, it is
evident that levels adjusted towards short matches are sparser
while levels evolved towards long durations are denser, with
more complex paths between the two bases. Compare, for
example, the straight diagonal line connecting the two bases
in Fig. 12b with the two long paths in Fig. 12d, one of which
requires passing through a large chunk of first-floor tiles. In
terms of gameplay objects, we observe more double damage
powerups in short matches (e.g. in Fig. 12b) and more armor
powerups in long matches Fig. 11d). Level generation also
attempts to correct for the imbalance between the classes: the
Heavy class that spawns in the purple base has better access to
powerups (e.g. double damage powerups in Fig. 12b, 12c and
12d) than the Scout in the orange base. The kill ratio of the
Scout was much higher than the Heavy in the initial levels (e.g.
ixr = 0.70 in Fig. 11a), but this imbalanced distribution of
powerups near one base improves the balance between classes.

E. Balanced Matches via Rule and Level Orchestration

A core question posed in this paper is how the generation
of both facets (rules and levels) can be orchestrated via the
surrogate model that maps them to gameplay outcomes. In
this set of experiments the generative process adjusts both the
initial level and the initial classes that compete in it. As in
previous experiments, 10 evolutionary runs attempt to adjust
an initial population of Scout and Heavy matchups in the same
level, towards a desired gameplay outcome. With 10 initial
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Fig. 13. Orchestration: Average improvement towards the desired kill ratio
and duration of evolved classes, from 10 evolutionary runs per level of
Fig. 5. The last column shows average improvement of all 100 runs per target
duration; error bars show the 95% confidence interval.
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Fig. 14. Orchestration: Changes in the two classes’ parameters and in the
levels evolved for balanced matches of short, medium and long duration.
Values show the difference of each parameter of the evolved class compared
to the initial class (Scout for P1, Heavy for P2) and the initial level used as a
seed. Notations are the same as Fig. 8 and Fig. 10. Values are averaged from
100 runs; error bars show the 95% confidence interval.

levels and three different target gameplay outcomes, a total of
300 evolved levels and classes are collected per EA.

Figure 13 shows the improvement over the initial setup.
It is evident that on average the improvements are higher
when targeting short matches, in part because the initial
matchups had longer durations (see Fig. 6a). This behavior
is consistent with class generation experiments summarized in
Fig. 7, although the improvements themselves are significantly
higher when both levels and classes are adjusted, on average.

On the degree to which levels and classes are adjusted,
Fig. 14 shows the parameter changes from the initial seeds
for class parameters and levels’ tile counts. It is clear that
there are few substantial differences between SO-EA and MO-
EA in terms of parameter changes or level changes. It is also
evident that changes in terms of levels are much more subdued
than in level-only generation (i.e. Fig. 10), although similar
patterns prevail (more ground-floor tiles and stairs for short
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Fig. 15. Orchestration: Most improved levels for D3, evolved via SO-EA.
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Fig. 16. Orchestration: Most improved levels for D1, evolved via MO-EA.

matches, more first-floor tiles for long matches). However, the
number of powerups does not change from its initial values
in most cases: indeed, none of the three powerup counts
changed in 79% of SO-EA experiments. The more subdued
level adjustments are in part due to the crossover operators for
the orchestrated approach which differ from level generation.
Classes similarly do not change as much as when evolving on
their own (i.e. Fig. 8). While there are no negative corrections
(e.g. lowered HP for the Heavy class in Fig. 8), some familiar
patterns remain, such as increased damage and range for short
matches. Notably, four class parameters of 16 stay unchanged
in at least 97% of SO-EA runs.

As indicative examples of how orchestrated evolution can
improve matchups towards the intended gameplay outcomes,
Fig. 15 shows the SO-EA results with the highest improve-
ments for D3 and Fig. 15 shows the MO-EA results with
the highest improvements for D1. D3 and D1 were chosen as
they have the highest average improvements across all targets
for SO-EA and MO-EA respectively. While familiar trends
as in Section VI-D are observed in short matches (e.g. first-
floor chunks made up of one tile and multiple stairs), it is
also evident that changes in the level architecture are less
pronounced and powerup placement does not particularly favor
one player’s base. Most of tweaks therefore are performed
on the classes rather than on the level: indeed, both classes’
damage is given a boost when targeting all durations (but
especially for the short duration). Unlike the findings in
Section VI-C, for short matches neither class evolves to match
the Sniper archetype in TF2.

FE Summary

Table II summarizes how the different experiments com-
pare in terms of the distance between the desired (d), the
actual simulation-based (a) and the predicted (p) gameplay
outcomes. The prediction error (i.e. the distance between pre-
dicted and actual outcomes) is significantly lower when both

TABLE II

BEHAVIORAL DIFFERENCES FROM THE ORIGINAL AND THE PREDICTED.

RESULTS ARE AVERAGED FROM 300 EVOLUTIONARY RUNS ACROSS THE
10 LEVELS, AND THE 95% CONFIDENCE INTERVALS IS INCLUDED.

Generator dist(a,p) dist(a, d) dist(p, d)

SO-EA class 0.120 4+ 0.008 | 0.174 £ 0.012 | 0.063 £ 0.011
MO-EA class 0.117 £ 0.007 | 0.168 £ 0.012 | 0.066 + 0.012
SO-EA level 0.182 £ 0.013 | 0.214 £ 0.015 | 0.043 £ 0.007
MO-EA level 0.167 £ 0.010 | 0.215 £ 0.015 | 0.055 % 0.009
SO-EA both 0.107 £ 0.007 | 0.114 £ 0.008 | 0.012 % 0.003
MO-EA both 0.102 4+ 0.007 | 0.112 £ 0.008 | 0.020 £ 0.005

TABLE III

PHENOTYPICAL DISTANCE FROM THE INITIAL CLASSES (C1 FOR SCOUT
AND C2 FOR HEAVY) AND THE INITIAL MAP. RESULTS ARE AVERAGED
FROM 300 EVOLUTIONARY RUNS ACROSS THE 10 MAPS, AND THE 95%

CONFIDENCE INTERVALS IS INCLUDED.

Generator C1 distance C2 distance tile difference
SO-EA class 1.000 4+ 0.042 | 1.319 £ 0.083 —
MO-EA class 0.978 £ 0.040 1.102 £ 0.058 —
SO-EA map — — 743 £ 35
MO-EA map — — 52.5 £ 2.8
SO-EA both 0.733 4+ 0.043 | 0.865 + 0.052 34.0 £ 3.1
MO-EA both 0.761 + 0.042 | 0.825 £ 0.048 30.1 £2.5

level and classes are adjusted via MO-EA, while the highest
errors are when only levels are adjusted. This is also true for
the distance between desired and actual outcomes, which is
closely related to the improvement metric of Eq. (4). Indeed,
the average dist(a, d) is significantly lower (and the average
improvement significantly higher) when both level and classes
are adjusted. On the one hand, this is not surprising since the
generator has multiple degrees of freedom and can counteract
imbalances between classes by tweaking class parameters but
also through level re-design. On the other hand, it is also evi-
dent that the predictive model can recognize and match tweaks
in both facets with a fairly accurate estimate of the actual
gameplay outcomes. The latter is an important finding which
shows the benefit of orchestration both as a generative medium
but also as a surrogate for gameplay simulations. Regarding
the surrogate model itself, the dist(p,d) metric shows that
the predictive model is understandably more “optimistic” than
the actual simulations demonstrate, but still steers evolution
in the right direction. An interesting observation is the low
dist(p, d) for level adjustments which is not corroborated by
the dist(a,d) metric: it seems that the large size of the level
input and the complex nature of its representation is more
likely to lead level evolution astray than other facets.

Table III compares the initial classes and levels with the final
best outcomes in the different generative approaches. Unlike
tile counts in Sections VI-D and VI-E, the tile difference
metric is the pixel to pixel image difference® which is more
granular. It is evident that orchestration makes fewer changes
to either class or to the level, which is corroborated by Fig. 14.

3Pixel to pixel difference using the representations of e.g. Fig. 5 directly
reflects the tiles on that specific location, including whether a healthpack is
on the ground or the first floor.
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It is also interesting that changes to the Heavy class are more
prevalent for SO-EA approaches than changes to the Scout
class. Meanwhile, level adjustments are smaller for MO-EA
approaches (significantly so when evolving levels alone).

Generally, the differences between the single-objective ap-
proach and the multi-objective approach are surprisingly small:
MO-EA is slightly ahead in terms of average improvement
but the differences are not significant. The highest average
improvement across all initial seeds and target durations is
with MO-EA on both levels and classes (O = 66.4% +2.5%).
The real benefit of MO-EA is that the improvements (however
marginal) over SO-EA are made with fewer changes to the
original levels and/or classes.

VII. DISCUSSION

The case study in Section VI investigated how a specific
matchup between archetypical character classes in shooter
games (i.e. a fast short-range Scout class and a slow, inaccurate
Heavy class) can be tailored to a more balanced gameplay
outcome of a certain match duration. The experiments demon-
strated that tweaks on both the character class parameters and
the level can lead to a closer outcome to the desired one, while
attempting to tweak character classes alone was prone to major
design shifts (e.g. turning every class into a Sniper class for
short matches). Moreover, it is evident that the improvements
as a result of evolution and the accuracy of the surrogate
model both vary depending on initial level and target duration.
Further enhancements can thus be made on both fronts.

Despite a robust set of experiments with a total of 1800
evolutionary runs in Section VI, there are many possibilities
for extending this work. An obvious limitation is that only
one class matchup was used as an initial seed: evidently,
a different matchup could be more difficult to adjust via
evolution or could lead to less accurate predictions from the
surrogate model. Indicatively, the Sniper class has over 90%
kill ratio against all TF2 classes in all levels of Fig. 5; thus,
it is expected that evolving levels alone would not suffice to
balance matchups against the Sniper class. Another limitation
is that only two gameplay outcomes are quantified, learned and
targeted through surrogate-based evolutionary search. More
nuanced gameplay metrics such as the entropy of players’
movement could be used as alternative targets for evolution;
combined with kill ratio balance, these metrics could push
evolution towards balanced matchups in more than one way.

In terms of the evolved character classes and levels pre-
sented in Section VI, there is room for improvement. On
the one hand, the evolved classes are often very different
from the original ones, especially when evolving classes alone.
This could be avoided in future work by having a secondary
objective for minimizing distance from the inital seeds (see
Table III for sample similarity metrics for classes and levels),
as in the work of [38]. In terms of the evolved levels, it is clear
that some architectural formations seem too chaotic, while
the one-tile ‘chunks’ of first floor tiles serve little purpose
and are visually jarring. Enhancements to the repair operators
for evolved levels could improve their appearance (e.g. with
cellular automata using a von Neumann neighborhood [30] to

make corners and remove the smaller ‘chunks’) with the caveat
of a more disparate mapping from genotype and phenotype.
For broader future work in terms of facet orchestration,
alternative ways of generating levels and classes could be de-
vised. The current generative approach highlighted in Section
V-D evolves classes and levels simultaneously by combining
them in the same genotype, similar to boards and rules in Ludi
[14]. On the other hand, a generative pipeline [1] could start
by adapting a level first and then adapt the classes for the best
evolved level. Alternatively, the two facets could be decoupled
in a bottom-up orchestration approach similar to a blackboard
system [1] where classes could be generated separately, levels
could be generated separately, and then the best combination
among all candidate classes and levels (based on the model)
would be chosen either to evolve further or as final result.
While MO-EA was introduced in this paper under the
assumption that the two gameplay targets could be conflict-
ing, the experiments in Section VI only evaluated the best
individual of the Pareto front based on the fitness of Eq. (1)
which combines the two targets. However, the Pareto front
with distances to each gameplay target could be interesting
to game designers working with a mixed-initiative interface
[3]. Through this Pareto front visualization, designers could
determine the best tradeoff between balance or desired dura-
tion based on their own needs. While MO-EA was in general
marginally better than SO-EA (see Section VI-F), the potential
for designer intervention is another point in its favor.
Despite this paper’s focus on search-based PCG with a
surrogate model, the general mapping between game facets
and gameplay outcomes could be exploited in a generative
adversarial network (GAN) setup. Following the PCGML
paradigm [26], a conditional GAN could be trained to output
levels and classes based on a desired gameplay outcome
provided as input. A network similar to the surrogate model
in this paper could judge not only the resulting gameplay, but
also whether generated output is good enough to pass as a real
design. Such an architecture would likely resemble the Aux-
iliary Classifier GAN used for natural image synthesis [39].
As mentioned earlier, the surrogate-model evaluation of
gameplay can be integrated into a designer tool for immediate
feedback during the design of a new level or new classes.
As an example, the tool can assess the Kill Ratio of every
possible pairing of archetypical TF2 classes in a designer’s
level and suggest the best class matchup for it. Alternatively,
the model can explain to the designer [40] which sections
of the level most impact the duration prediction and thus
should be changed [41]. Finally, inspired by [3], evolution
can produce suggestions that improve predicted balance or
duration for a level or its classes as the latter is being designed.

VIII. CONCLUSIONS

This paper has proposed a model for mapping multiple game
facets (rules, levels, and gameplay) and a generative approach
that uses this mapping to adjust human designs towards cer-
tain desired gameplay outcomes. Focusing on shooter games,
experiments showed that classes, levels and their combination
can be adjusted towards more balanced matchups of a spe-
cific duration. Using artificial evolution guided by a single
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objective that combined both gameplay targets or a multi-
objective approach that decoupled them, it was evident that
an orchestration of both classes and levels was more efficient
at improving the human designs towards the desired outcomes.
The use of surrogate models for evaluating multiple game
facets opens up a broad range of future research directions
in procedural content generation and Al-assisted design.
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