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Abstract—Which features of a game influence the dynamics of
players interacting with it? Can a level’s architecture change
the balance between two competing players, or is it mainly
determined by the character classes and roles that players choose
before the game starts? This paper assesses how quantifiable
gameplay outcomes such as score, duration and features of the
heatmap can be predicted from different facets of the initial game
state, specifically the architecture of the level and the character
classes of the players. Experiments in this paper explore how
different representations of a level and class parameters in
a shooter game affect a deep learning model which attempts
to predict gameplay outcomes in a large corpus of simulated
matches. Findings in this paper indicate that a few features of
the ruleset (i.e. character class parameters) are the main drivers
for the model’s accuracy in all tested gameplay outcomes, but
the levels (especially when processed) can augment the model.

Index Terms—Machine Learning, Convolutional Networks,
Shooter Games, Level Design, Character Classes, Orchestration

I. INTRODUCTION

Over the last 30 years, digital games have demonstrated
that they can be rich and multifaceted experiences. While
games such as Rockband (Harmonix, 2017) put particular
emphasis on the game’s soundtrack and reward gameplay
that matches a rhythm, other games such as Dear Esther
(The Chinese Room, 2012) reward exploration of a visually
stunning world and discovery of snippets of stories scattered
within it. Regardless of each game’s individual focus, most
games are a fusion of six facets: visuals, audio, game rules,
levels, narrative, and gameplay [1], [2]. Out of those facets, the
first five must be designed and carefully tuned before the game
becomes available, while gameplay is reliant on a community
of players. Gameplay includes a player’s strategies to win,
their understanding of the game’s embedded narrative and
moral code, and the emotions that are triggered by scripted
or unscripted in-game events. One of the most challenging
tasks for a game developer, therefore, is the creation of
content (e.g. levels, visuals and rules) that are harmonious and
complementary and also reward the intended gameplay style
and elicit the intended players’ emotions [1].

If the task of orchestrating game content of different facets
towards intended player experiences is the most challenging
task for a human designer, is it possible to empower computers
to perform orchestration? Research in artificial intelligence
(AI) and games has often attempted to measure the player
experience either in terms of game progression and outcomes

[3], [4] or in terms of emotional responses [5] and gameplay
motivations [6]. Game analytics [7] collect metrics of real
players in a released game or during beta-testing, while
simulations with artificial agents are used when end-users
are unavailable or when a large volume of generated game
content must be evaluated [8]. While AI-based simulations
are less demanding (in terms of both resources and time) than
human evaluations, they still have a substantial computational
overhead. Moreover, testing each and every aspect of a game
(or minor tweak) via simulations does not match how human
designers create content. In a typical design iteration, humans
use their past knowledge of this game or other similar games,
their own preferences and their own playstyle to estimate the
player experience of the game content currently designed,
which they then tweak to better align to their predictions of
how end-users will perceive its quality.

This paper focuses on how a computational designer can
predict gameplay qualities and outcomes of content, without
testing it in simulations. The computational model accounts for
“objective” metrics of gameplay traces such as game balance
and match duration, and attempts to predict these outcomes
from the initial state of the game, accounting for multiple
facets in a multimodal fashion. While there is extensive work
in detecting patterns within a corpus of similar or dissimilar
types of content [9] via unsupervised learning, the proposed
model aims to match patterns across facets to specific game-
play outcomes, via supervised multimodal learning. Moreover,
while work on affective computing in games [10] focuses on
predicting players’ emotions and other personal aspects of the
player experience from human playtraces, this paper targets
less subjective gameplay properties based on analytics and,
more importantly, predicts gameplay outcomes from the initial
designed game assets without actually playing the game.

The experimental method followed by this paper is largely
exploratory, using a corpus of shooter game playtraces [11],
[12] to find which features of two facets (levels and rules)
can best predict quantifiable gameplay outcomes. Using a
corpus of 2 · 105 simulated matches in a competitive two-
player shooter game developed specifically for this line of
research, a deep learning architecture is tested using levels and
the two players’ character classes as input, and one gameplay
metric as output. Character classes are player roles chosen by
the players before a game starts, and differentiate the avatar’s
weapon and attributes. Different character classes allow for
different player strategies and playstyles, while in competitive
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e-sports the balance between classes must be constantly mon-
itored based on the meta-game and corrected with patches. By
modifying aspects of the ruleset (as parameters of character
classes are constant) and the level, the computational models
should be able to predict aspects of the gameplay facet based
on a multimodal fusion of the level and rules facets, acting as
a surrogate of cumbersome playthroughs.

This paper extends the work of [11]–[13] on surrogate-
based procedural generation, focusing instead on the qualities
of the surrogate model rather than on the generation of
levels or character classes. This paper explores the impact
of different inputs—especially level representations—on the
predictive power of the deep-learning models. The two game-
play outcomes (kill ratio, match duration) of earlier work are
augmented with measures of entropy on playtraces’ heatmaps.
Finally, this paper demonstrates how the models can explain
their choices and aid the designer through visualizations on
any set of player classes and level being designed.

II. BACKGROUND WORK ON DEEP LEARNING

Conventional machine learning methods are limited in their
ability to process raw data. Shallow pattern recognition is a
two-step process: (a) transform raw data to a suitable repre-
sentation via a handcrafted feature construction process based
on expert knowledge; (b) learn to make decisions based on
the transformed data. In many cases, however, it is not known
a priori which data representation is most appropriate for a
learning task. Deep learning methods learn representations
directly from the raw data via the composition of simple but
nonlinear data transformations, thus bypassing any handcrafted
feature construction process. Very complex functions can be
learned by combining enough transformations, evidenced by
the success of deep learning in visual recognition [14], natural
language processing [15] and agent control [16].

Convolutional neural networks (CNNs) are deep learning
models designed to process data that come in the form of
multidimensional arrays and that exhibit spatially structured
information, such as audio spectrograms, images and videos.
While CNNs have a longer history, their success in the Image-
Net competition [14] has made CNNs the dominant approach
for almost all visual detection and recognition tasks [17], [18].

Deep learning has also been applied in multimodal learning
tasks [19]. Multimodal learning involves relating information
from multiple and, usually, heterogeneous information sources
[20]. Multimodal learning exploits information fusion methods
based either on feature-level fusion (early fusion) or score-
level fusion (late fusion). In early fusion, information of
different modalities is aggregated via simple element-wise
averaging, product and/or concatenation [21]. In late fusion,
high level representations for each modality are computed
separately and then fused together via simple averaging or
by stacking another learning model [22]–[24].

Deep learning has been applied in games for a broad
variety of goals, such as agent decision-making based on
an abstraction of the game state [25] or using the actual
screen’s pixels as input [16], [26]. In affective computing, deep

(a) 3D Level (b) In-game view

Fig. 1: Example level. In the 3D level, orange and purple
areas are the bases of player 1 and 2 respectively. Red tiles
are healing locations, blue and turquoise tiles are armor and
double damage powerups respectively.

learning is often applied to predict the self-reported emotional
states of players. For instance, gameplay and physiological
data were combined as inputs to a CNN which predicted
self-reported preferences [27], while in [28] gameplay logs
(processed via a CNN) and the level (processed via another
CNN) were fused in a final fully connected layer to predict
players’ feedback such as challenge or levels’ creativity. In
procedural content generation via machine learning (PCGML)
[9], human-authored levels are often used as a corpus and
the trained model decides which tile should be placed at
some position based on which tiles precede it, e.g. via Long-
Short Term Memory networks [29] or generative adversarial
networks [30]. The line of research followed in this paper
diverges from work in PCGML as it follows a supervised
learning approach towards game outcomes computed via sim-
ulations; moreover, generation [11], [12] attempts to optimize
the predicted gameplay outcome rather than exploiting learned
patterns or the latent space.

III. PROBLEM DESCRIPTION

As noted in the introduction, we use a first-person shooter
game with typical deathmatch gameplay as the target of this
study. Every match takes place in a level, with two players
each controlling an avatar that competes for the most kills of
their opponent. Every time an avatar’s hit points (HP) reaches
0, the opponent scores a kill and the avatar respawns at the
player’s base. When the total number of kills reaches 20, the
game ends and the player with the most kills is the winner.

The game is played in a level consisting of multiple floors.
Players’ bases are in opposite corners of the map; players
start the game in their base and re-spawn there when killed.
The level has walls which block movement and vision, and an
elevated floor (first floor) which is only accessible from the
ground floor via stairs. Avatars can jump from any first-floor
tile to an adjacent ground-floor tile, and enjoy some cover
from their elevated position. Therefore, staying on the first
floor offers some tactical advantages such as a sniper location
[31]. Any tile on the first or ground floor may have one of
three types of powerups. The types of powerups are healing
(which increases the avatar’s hit points up to a maximum),



TABLE I: Input Channels: binary channels per tile type (T1-
7) and heightmap (H1), distance from bases (D1-4), safety
metric before and after high-pass filter between bases (SB1-8)
and between powerups (SR1-8), exploration from base to base
(EB1-3) and from base to resources (ER1-3).

T1 T2 T3 T4 T5 T6 T7

H1 D1 D2 D3 D4

SB1 SB2 SB3 SB4 SB5 SB6 SB7 SB8

SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

EB1 EB2 EB3 ER1 ER2 ER3

armor (which adds temporary hit points to the avatar which
are depleted first), and double damage (which doubles the
player’s weapon damage for a limited amount of time). When
an avatar collides with a powerup, they receive its effect and
this powerup can not be reused until some time has passed.
The powerups can increase the survivability (healing, armor)
or the threat (double damage) of the avatar.

The two competing avatars belong to different character
classes, which are a common way of defining roles in shooter
games such as Team Fortress 2 or TF2 (Valve, 2007). Char-
acter classes in this testbed define the avatar’s hit points and
movement speed, as well as their weapon’s characteristics. Six
weapon parameters are included: damage (per bullet), accuracy
(i.e. the size of the cone in which bullets are fired), rate of fire,
clip size, the number of bullets per shot and weapon range.
Weapon range discerns when AI agents should shoot, and is
used during simulations (see Section III-A). There are three
range values: “short”, “medium” and “long”.

A. Corpus Preparation

This paper explores the successes and failures of different
machine learning models on a corpus of 2 · 105 data points.
Each data point represents the simulation of one level with two
character classes, and its gameplay outcomes. To produce the
corpus, 105 shooter levels were generated via a combination
of digger agents and cellular automata [32]. Every level in the
corpus consists of 20× 20 tiles, split into cells of 4× 4 tiles
for the purposes of the initial path generation and powerup
placement. Details of the constructive algorithms used to
generate the levels are in [11]. Each level in the corpus was
tested by two character classes with random parameters within
[0, 1]; these were normalized based on intuitive value ranges
of classes in TF2, and are re-mapped to the original value

range when performing the simulations. The generated pair
of classes are tested in two simulations per level, swapping
the bases of each character class in the second simulation.
Simulations are performed by artificial agents controlled by
behavior trees, adapted from the framework of [33]. The
resulting dataset is 2 · 105 matches; it contains only matches
that ended successfully with 20 kills within 600 seconds.

B. Input

The goal of this paper is to create a surrogate model
based on machine learning, which can predict the gameplay
outcomes based on a level and aspects of the ruleset (in
this case players’ character classes). The level and the class
parameters are therefore the inputs to the model. Each player’s
class consists of 8 parameters as detailed above, and the
parameters used as input to the network are normalized to [0, 1]
as detailed in Section III-A. Examples of archetypal classes
of TF2 normalized to the value range used are in Table IV.
Unlike previous work [11]–[13] which tested different network
architectures while the input and output remained the same,
this paper expands the types of inputs for levels and explores
how they impact learning.

Levels can be parsed based on each individual tile’s el-
evation and type (i.e. splitting ground-floor tiles, first-floor
tiles, walls, stairs, healing, armor, double damage powerups)
to produce 7 binary channels1. A simple addition to these
channels is a “heighmap” which shows walls as 1, first-floor
tiles as 0.5, ground floor tiles as 0 and stairs as 0.25 (i.e.
between the first and ground floors). Four channels compute
the distance of each tile from the base of one player (taking
into account connectivity between first-floor and ground-floor
and use of stairs). Per player, the path distance is normalized
to an ad-hoc constant (80 tiles) or via min-max normalization,
resulting in two channels per player. The ad-hoc constant nor-
malization accentuates differences between players’ distances
and distinguishes between levels with long paths and levels
with short paths. The min-max normalization shows more
clearly which tile on the level is the furthest from one base.
Based on relative proximity of each tile to each base, its
safety score to that base can be computed: this metric is a
real number within [0, 1] and has non-zero values when tiles
are much closer to one tile than another tile of the same type
[34]. The safety matrix per base, and simple addition and
subtraction operators on these matrices make up 4 channels,
while binary versions of these matrices with safety values
above an ad-hoc threshold of CS = 0.35 [34] make up another
4 channels. Safety can also be calculated using the powerups
as reference points, where safety channels per powerup have
non-zero values if a tile is much closer to this powerup than to
any other powerup. The aggregated version of these powerup
safety channels (for all powerups, for healing only, for armor
only and for damage only) make up 4 channels, and the
same channels after thresholding values above CS = 0.35

1While [11], [12] considered an 8th channel (reserved for “cover” tiles),
we do not consider it in this study as it consists of zeros in the current corpus.



make up another 4 channels. Finally, exploration is measured
based on a flood fill algorithm starting from one player’s
base until the other base is discovered [34]. This results in 3
channels (exploration from the player 1 base, exploration from
the player 2 base, and their difference). The same process is
repeated, averaging the exploration matrices from a player’s
base until a certain powerup is covered: this makes up another
3 channels (one per base and their difference). These different
ways of processing the game levels result in 34 channels in
total (see Table I), out of which 16 are binary and 18 have
real values within [0, 1].

In addition to these visualizations of level quality, a number
of summary statistics can be calculated from the channels of
Table I. Some of these statistics are introduced in [34], such as
the average safety score of different powerups to one player’s
base or the exploration from one base to the other. Other
metrics occur by simply adding all values in matrices of Table
I, e.g. the number of armor powerups from the sum of matrix
T6. Metrics are normalized to [0, 1] in a reasonable fashion,
e.g. the number of ground floor tiles is divided by 400 tiles
in the level, the number of armor powerups is divided by 16
since the level generator places one powerup (if any) per cell,
and the number of explored tiles is divided by the number
of passable (non-wall) tiles. Among the statistics computed,
the number of tiles of each type are computed in each of the
four quadrants of the level, as well as the middle quadrant.
In total, 90 summary statistics for the level (level stats for
brevity) are computed; their impact on the predictive model
(with or without level channels) is tested in Section IV.

C. Gameplay Outcomes

An important outcome of a playthrough is the winner of
the match and the degree of winning; both are measured via
a kill ratio (KR) as the number of kills of player 1 divided
by the total number of kills of both players (i.e. 20 in these
simulations). If KR≈0.5 then the matchup was balanced, while
KR near 1 shows a clear advantage for player 1 and KR near 0
show a clear advantage for player 2. The duration of the match
(t) is another intuitive metric, as a designer may wish for
some matches to last longer. These gameplay outcomes have
been used in past work as prediction targets and as targets
for adapting character classes [12] and levels [11] towards
balanced matches of a short, medium or long duration.

This paper explores two additional gameplay outcomes,
focusing on the spatial behavior of players based on heatmaps.
Specifically, the heatmaps of players’ deaths and movement
trajectories are used to compute an entropy score. The heatmap
of the players’ deaths consists of 16 cells on a 4×4 grid: each
cell stores the number of deaths that occurred within the 5×5
tiles of that cell. Similarly, the heatmap of players’ movement
is 16 cells and each cell stores how many times each player
was within that cell (their position is captured every second).
With 16 values per heatmap, the entropy is calculated as:

H = − 1

log2N

N∑
c=1

pc
P

log2
pc
P

(1)

Fig. 2: Distributions of the four gameplay outcomes.

where N is the number of cells in the heatmap, pc is the
number of entries in a specific cell, and P is the total number
of entries in the heatmap (P =

∑C
c=0 pc).

This results in two entropy scores: one for all death locations
(Hd) and one for players’ positions (Hp). These entropy scores
do not distinguish between the two players; while it could be
worthwhile to measure the entropy of positions of player 1 and
even compare it with that of player 2, the aggregated entropy
scores offer a more holistic view of the game’s state.

D. Collected Data

Based on Section III-C, four gameplay outcomes are con-
sidered for each simulated match. Since matches last between
150sec and 600sec, the t value is min-max normalized between
[150, 600]. The distributions of these gameplay metrics in
the corpus are presented in Fig. 2. While the KR metric
is almost uniformly spread (dipping slightly in edge cases
where a player won by a landslide), the distribution of t is
skewed towards shorter matches, with an average of 323sec
(t = 0.385). Finally, the distributions of Hd and Hp are
skewed towards high values; this means that positions of
deaths or player movements occurred within a few cells and
are not spread uniformly.

E. Network Architecture

The network architecture is largely based on previous work
[11], [12], [35], but its hyperparameters were adapted based
on extensive preliminary experiments. The network follows a
late fusion multimodal learning approach, with two or three
separate information streams (see Fig. 3): one for the level,
one for the pair of character classes, and an optional stream
for the level stats. The level (parsed into binary or real-
valued channels, as per Table I) is processed by two blocks
of convolution (of size 5× 5 without zero-padding) and max-
pooling, with 8 and 16 filters respectively. The end-result of
these convolutions is a flat vector of 64 features for the level.
The 16 parameters of the character classes are passed to a
single fully-connected layer of 8 nodes, the output of which
is concatenated to the flat feature vector of the level. Finally,
this combined feature vector (72 nodes) connects to a fully
connected layer of 128 nodes which connects to another layer
of 32 nodes, which then connects to one output that predicts
one gameplay outcome (see Section III-C). In Fig. 3b, an
alternative architecture which includes the level stats as input
is shown, where the 90 level stats are passed as a vector to
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Fig. 3: The surrogate model architecture, with two or three
information streams: the level’s channels (2D), the two char-
acter classes’ parameters (vector), and in Fig. 3b also the level
stats (vector). The model’s output is one gameplay outcome.

a separate layer of 32 nodes which is concatenated with the
hidden nodes from level channels and from class parameters.
All nodes use an ELU activation function [36]. The output of
each hidden layer is normalized via batch normalization [37].

IV. RESULTS

Experiments in this paper explore how different channel
sets and the inclusion of different information streams (such
as the level stats) affect the performance of the regression-
based predictive model. Finally, the paper suggests how the
models can be used for visualization and designer assistance
in a possible AI-assisted design tool [38]. This paper uses
two accepted performance metrics for regression: (a) the
mean absolute error, which measures the difference between
predicted and actual gameplay output and (b) the R2 metric
(with typical ranges of [0, 1]) which measures how much of
the variance in the data is explained by the model. All models
in this section were trained for 30 epochs, while early stopping
was used to prevent over-fitting. Reported results are averaged
from 10 trials using the same 10% of the data for validation
(using a hold-out procedure). Significant findings are based on
the non-parametric Mann-Whitney U test with α = 0.01.

A. Impact of Combined Level Channels

In order to explore how combinations of levels and weapons
can better predict the different gameplay outcomes, the chan-
nels of Table I are used in full or in different subsets. Since
earlier work [11] used only the naive tile-based channels T1 to
T7 (notation henceforth T1-7), their performance will be used
as a baseline. Different sets of channels were chosen based on
authors’ intuition and ranged from few core channels to the
full set of Table I. The following sets of channels are reported:
S1 T1-7 (7 channels)
S2 D1-2, H1, SR1 (4 channels)
S3 D1-2, H1, SR1, ER1-2, EB3, SB4 (8 channels)
S4 D1-2, H1, SB3-4, SB7-8, SR2-4, SR6-8, EB1-3, ER3

(17 channels)
S5 all 34 channels of Table I
S6 T1-7, D1-2, H1, SR1 (11 channels)

Out of these channel sets, S5 and S6 include all channels of
S1 (i.e. the original channels used as a baseline). S2, S3 and
S4 have non-binary channels which do not include any of the
channels in S1. The set S6 is the union of S1 and S2.

Table II shows the performance of the computational models
for different sets of inputs and the four different game out-
comes. While we treat S1 (without level stats) as the baseline
used in past work, the table includes the indicative perfor-
mance of a simple linear regression model which concatenates
all 34 level channels (S5) and class parameters. Table II
indicates that the naive binary channels used as a baseline (S1)
are surprisingly powerful in predicting all gameplay outcomes,
although for both entropy measures (Hd, Hp) the low R2

indicates overfitting to the most common occurrences in the
distribution. While small sets of channels chosen specifically
for the rich information they contain (S2, S3) underperform
rather substantially compared to the baseline, sets which
combine S1 with other channels (i.e. S5, S6) significantly
outperform the baseline in several target outcomes. The best
performance is with S5 which combines all 34 channels of
Table I, with a relative increase in terms of MAE of 2.2%
for KR, 3.4% for t and 3.4% for Hp. It is surprising that
the smaller channel set of S6 performs equally or better than
the larger set of S4 (which however does not contain the
channels of S1), which is further evidence that the information
of S1 seems invaluable in predicting gameplay outcomes from
levels. For remaining experiments in this paper, only the S5
channels will be explored (along with S1 as a baseline) as it is
shown to be superior. When combining the level channels with
quantifiable level stats, the models become more accurate than
their respective ones without stats (using the same channels).
The model with S5 channels and level stats has the best overall
accuracy, especially for match duration (4.8% lower MAE and
5.2% higher R2 than the baseline) and Hd (1.4% lower MAE
and 6.4% higher R2 than the baseline).

B. Individual Impact of Levels and Character Classes

It is worthwhile to understand which streams of information
(the level stats, the full level channels, or the character class



TABLE II: Validation results for different inputs and outputs.
Values significantly better (lower for MAE, higher for R2)
than the baseline (S1) are in bold. LR is linear regression.

KR t Hd Hp

MAE R2 MAE R2 MAE R2 MAE R2

Without level stats (CNN of Fig. 3a)
LR 0.127 0.690 0.131 0.166 0.092 0.006 0.0640 0.0021
S1 0.069 0.910 0.082 0.605 0.079 0.312 0.0340 0.555
S2 0.073 0.900 0.086 0.570 0.086 0.198 0.0398 0.410
S3 0.072 0.901 0.086 0.572 0.086 0.198 0.0400 0.405
S4 0.068 0.912 0.080 0.621 0.079 0.316 0.0336 0.565
S5 0.067 0.912 0.079 0.627 0.079 0.323 0.0328 0.585
S6 0.068 0.911 0.080 0.624 0.079 0.32 0.0334 0.570
With level stats (CNN of Fig. 3b)
S1 0.066 0.914 0.079 0.627 0.078 0.327 0.0331 0.578
S5 0.067 0.914 0.078 0.636 0.078 0.332 0.0327 0.587

TABLE III: Validation results when streams of information are
omitted or set to zero.

KR t Hd Hp

MAE R2 MAE R2 MAE R2 MAE R2

Character classes only (CNN of Fig. 3a)
— 0.074 0.896 0.201 0.122 0.093 0.080 0.0535 0.034
Level channels only (CNN of Fig. 3a)
S1 0.259 0.005 0.110 0.356 0.085 0.210 0.0366 0.487
S5 0.259 0.004 0.110 0.354 0.085 0.209 0.0365 0.487
Level stats only (CNN of Fig. 3b)
— 0.257 0.012 0.113 0.326 0.086 0.186 0.0390 0.429
Level channels and level stats only (CNN of Fig. 3b)
S1 0.258 0.011 0.109 0.368 0.084 0.219 0.0360 0.503
S5 0.258 0.012 0.109 0.367 0.084 0.217 0.0360 0.502
Level stats and character classes only (CNN of Fig. 3b)
— 0.067 0.912 0.085 0.579 0.081 0.288 0.0364 0.502

parameters) contribute most to the models’ predictions. To do
this, we first test performance metrics for regression when
the same architecture as in Section IV-A is trained on a
modified corpus without certain streams of information. For
example, the impact of character classes is tested by using
the architecture of Fig. 3a or Fig. 3b and setting the character
class vector as zero values. In this case, the prediction is made
based on the level channels only or on the level channels
and level stats only, respectively. Table III presents the MAE
and R2 metrics when different streams are omitted. While
any combination of level channels and level stats seems
unable to create useful predictive models for KR, the character
classes are quite capable of predicting KR but are perform
very poor when predicting heatmap metrics. The winner of a
match seems to be primarily determined by the classes of the
competing players while the level can only do that much to
affect power differences. When level stats and class parameters
are used without level channels, both MAE and R2 values are
comparable to the baseline (S1).

Further investigating the impact of individual character class
parameters can also be informative. In this paper, the F
statistic is used to test the significance of groups of character
class parameters. It employs a linear regression model fitted
on all 16 class parameters and a second linear regression
model fitted on a subset of class parameters obtained after
omitting one parameter from both classes (e.g. the HP of both

player 1 and 2). The F statistic [39] is used to compute the
probability (p values) for rejecting the null hypothesis that this
class parameter has no impact on the sum squared error of
the least squares fit of the linear regression model. Based on
this method, we find significant effects (p < 0.05) between
the same five class parameters in all gameplay outcomes:
HP, damage, accuracy, number of bullets and range (also rate
of fire for Hd). It is surprising that speed is not a strong
factor for match duration, but otherwise the findings for the F
statistic make sense, at least for KR and t. This analysis shows
that while character classes’ parameters or their non-linear
combination can be a robust predictor for some gameplay
outcomes, the level contains vital information that leads to
much better predictive behavior when combined.

C. Explainability of the Model

As the success of machine learning applications grows, so
does the call for explainable AI, e.g. visualizing the inner
workings of black-box machine learning methods [40]–[42].
Understanding the decisions of an AI system makes it more
accessible and allows designers to better explore the creative
potential of such systems [38]. This can be achieved by
showing which parts of the image have the most influence
on the model’s prediction, e.g. via Gradient-weighted Class
Activation Mapping (grad-CAM) [43]. This method computes
the gradient of an output node with respect to the nodes of a
convolutional layer, given a particular input. By multiplying
the input with the gradient, averaging over all nodes in
the layer and normalizing the resulting values, we obtain
a heatmap that shows how much each area of the input
contributed to increasing the value of the output node. While
grad-CAM is typically used in classification tasks, it also
works for regression-based models which deal with floating
point predictions; in that case, both the positive and the
negative contributions are important.

As an example of how CAM can be applied to this particular
problem, Fig. 4 shows the activation heatmap for the level
of Fig. 1 in two matchups with archetypal classes of Team
Fortress 2: Sniper versus Scout, and Heavy versus Scout (see
the parameters of each class in Table IV). The 4×4 heatmaps
show the last convolutional layer of Fig. 3a with S5 channels.
Differences between e.g. Fig. 4a and Fig. 4e show that the class
pairing affects the activation heatmap on the level, highlighting
how the model acknowledges the interactions between the two
facets. Red areas in Fig. 4 show which parts of the level lead
to a lower value in the gameplay outcome and blue areas show
which parts lead to a higher value. For example, Fig. 4a shows
that the kill ratio of player 1 (Sniper) is negatively affected
by the labyrinthine narrow paths of the right half of the level.
Essentially, high activations (positive or negative) can tell a
designer which part of the level to tweak.

The same principle can be applied to the class parameters:
by computing the gradient of the output with respect to the
input layer.2 For the Sniper versus Scout matchup, the class pa-

2In this case, values are not normalized or averaged over all nodes in the
layer as this would result in a single contribution value for all class parameters.
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Fig. 4: Activation Maps: top row for the Sniper versus Scout
matchup and bottom row for the Heavy versus Scout matchup.

TABLE IV: Normalized parameters for TF2 classes, used as
an example for this paper (raw values in parentheses).

Normalized Scout Heavy Sniper
HP 0.00 (125) 1.00 (300) 0.00 (125)
Speed 1.00 (133) 0.00 (77) 0.41 (100)
Damage 0.21 (60) 0.00 (36) 1.00 (150)
Accuracy 0.80 (80%) 0.60 (60%) 1.00 (100%)
Clip size 0.03 (6) 1.00 (200) 0.12 (25)
Rate of Fire 0.03 (1.6) 1.00 (40) 0.00 (0.67)
Bullets 1.00 (10) 0.00 (1) 0.00 (1)
Range 0.00 (short) 0.00 (short) 1.00 (long)

rameters activated (at 0.10 or above) are the Sniper’s accuracy
(-0.27 for t, 0.92 for KR) and the Scout’s accuracy (-0.57 for
KR). These numbers tell the designer that for longer matches
a drop in the Sniper’s accuracy is needed; for lower kill ratios
for the Sniper, an increase in the accuracy of the Scout and
a decrease in the accuracy of the Sniper are needed. These
class parameter activations are even more straightforward to
process and rationalize than the level heatmaps and can thus
be a valuable tool. For completeness, in the matchup between
Heavy and Scout the activated parameters (at 0.10 or above)
are the Scout’s accuracy (-0.32 for t, -1.20 for KR), the
Heavy’s HP (0.28 for KR), the Heavy’s accuracy (0.55 for
KR), and the Scout’s damage (-0.12 for KR).

V. DISCUSSION

The experiments in this paper were largely exploratory, in
order to assess which representations of the level can best
predict specific gameplay outputs. Findings indicate that a
more holistic view of the level can lead to superior predictive
models based on regression, although some naive binary chan-
nels are surprisingly effective in this task as well. Combining
2D representations with summary level statistics and classes
wields more powerful models, and removing any of the three
streams of information lowers the overall accuracy. The 2D
level representation also offers useful feedback as a grad-CAM
heatmap which can be integrated with a mixed-initiative tool

[44], also because the system can predict gameplay outcomes
of unseen, work-in-progress levels in milliseconds.

Obviously, this exploratory process of different datasets and
models did reveal a number of pitfalls and limitations. On the
one hand, low R2 and low MAE statistics in some of the
models point to overfitting. This can be explained from the
skewed distribution of the data, especially when comparing the
KR and the Hd distributions in Fig. 2 and their respective R2

scores. Another reason for this behavior may be because the
corpus contains samples that are very similar in terms of input
features, but different in terms of output values. In such cases,
a learning model must learn to map the same input to different
outputs. The stochastic nature of playthroughs exacerbates this
problem as the same level/class pair may result in different
gameplay outputs.

On that topic, while the artificial agents are able to compete
(winning or losing within the 5 minutes in 94% of cases), they
navigate the level largely based on the location of powerups.
In maps with few powerups, agents are expected to converge
to the same locations and kill each other around those areas.
On the other hand, human players are more likely to exploit
areas that lack powerups but have tactical advantages, such as
elevated platforms or cover due to walls. Therefore, a more
elaborate AI agent or even human playtraces may lead to a
more varied corpus and perhaps models that can learn it better.

Beyond the limitations in this paper’s methods, several
directions can be pursued in future work. Specifically, more
complex gameplay outcomes as outputs could be used, such as
the heatmap of players’ movement (rather than its aggregated
entropy score). A computational model which directly predicts
a heatmap of an unseen level for two competing character
classes could be beneficial both during the design process
and as a cheap game analytics tool [7]. The models could
be improved if the 2D level representations are transformed
automatically into a lower-level representation (similar to the
level stats), e.g. via an autoencoder. Finally, a more ambitious
effort could test whether a broader corpus of dissimilar levels
and dissimilar gameplay styles (such as team-based compe-
tition) could be used to train more general surrogate models
that can predict gameplay in completely unseen games.

VI. CONCLUSION

This paper explored how different representations of the
level facet (as more nuanced 2D visualizations and as summary
statistics) can impact a surrogate model of gameplay which
can predict the outcomes of a playthrough without simulating
it. Focusing on shooter games and an extensive corpus which
has been used for procedural content generation [11], [12],
the trained models can fuse two facets of games (levels, rules)
to predict a third facet (gameplay). Level summary statistics,
but also a holistic set of level visualizations, prove to be
effective predictors of four gameplay outcomes, although the
character class parameters seem to be most important. Trials
with explaining the impact of levels and rules on the output
highlight how the models can become designer support tools.
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